# **2G** Acceleration

#### Read:

Acceleration is the change in the speed or direction of an object over time—in other words, acceleration is a change in an object's velocity over time. To determine the rate of acceleration, you use the formula below. The unit for acceleration is meters per second per second (abbreviated  $m/s^2$ ).



A positive value for acceleration shows speeding up, and negative value for acceleration shows slowing down. Slowing down is also called *deceleration*.

The acceleration formula can be rearranged to solve for other variables such as final speed ( $v_f$ ) and time (t).

$$v_f = v_i + (a \times t)$$
$$t = \frac{v_f - v_i}{a}$$

#### Examples:

1. A skater increases her speed from 2.0 m/s to 10.0 m/s in 3.0 seconds. What is the skater's acceleration?

| Looking for                       | Solution                                                                                        |
|-----------------------------------|-------------------------------------------------------------------------------------------------|
| Acceleration of the skater        |                                                                                                 |
| Given                             |                                                                                                 |
| Initial speed = $2.0 \text{ m/s}$ | Acceleration = $\frac{10.0 \text{ m/s} - 2.0 \text{ m/s}}{2.0 \text{ m/s}} = 2.7 \text{ m/s}^2$ |
| Final speed = $10.0 \text{ m/s}$  | 3.0 s                                                                                           |
| Change in time $= 3.0$ seconds    |                                                                                                 |
| Relationship                      | The acceleration of the skater is 2.7 meters per                                                |
| $a = \frac{v_f - v_i}{t}$         | second per second.                                                                              |



## Page 2 of 4

2. A car accelerates at a rate of  $3.0 \text{ m/s}^2$ . If its initial speed is 8.0 m/s, how many seconds will it take the car to reach a final speed of 25.0 m/s?

Skill and Practice

| Looking for                                                                                                         | Solution                                                                            |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| The time to reach the final speed                                                                                   | Time $= \frac{25.0 \text{ m/s} - 8.0 \text{ m/s}}{5.0 \text{ m/s}} = 5.7 \text{ s}$ |
| Given<br>Initial speed = $8.0 \text{ m/s}$ ; Final speed = $25.0 \text{ m/s}$<br>Acceleration = $3.0 \text{ m/s}^2$ | The time for the car to reach its final speed is 5.7 seconds.                       |
| <b>Relationship</b> $t = \frac{v_f - v_i}{a}$                                                                       |                                                                                     |

#### Practice:

- 1. While traveling along a highway, a driver slows from 24 m/s to 15 m/s in 12 seconds. What is the automobile's acceleration? (Remember that a negative value indicates a slowing down or deceleration.)
- 2. A parachute on a racing dragster heading north opens and changes the velocity of the car from 85 m/s to 45 m/s in a period of 4.5 seconds. What is the acceleration of the dragster?
- 3. The table below contains data for a ball rolling down a hill. Fill in the missing data values in the table and determine the acceleration of the rolling ball.

| Time (seconds) | Speed (km/h) |
|----------------|--------------|
| 0 (start)      | 0 (start)    |
| 2              | 3            |
|                | 6            |
|                | 9            |
| 8              |              |
| 10             | 15           |

- 4. A car traveling at a speed of 30.0 m/s encounters an emergency and comes to a complete stop. How much time will it take for the car to stop if it decelerates at  $-4.0 \text{ m/s}^2$ ?
- 5. If a car can go from 0 to 60. mph in 8.0 seconds, what would be its final speed after 5.0 seconds if its initial speed were 50. mph?

### Page 3 of 4

6. A cart rolling down an incline for 5.0 seconds has an acceleration of  $4.0 \text{ m/s}^2$ . If the cart has a initial speed of 2.0 m/s, what is its final speed?

Skill and Practice

- 7. A helicopter's velocity increases from 25 m/s, east to 60 m/s, east in 5 seconds. What is the acceleration of this helicopter?
- 8. As she climbs a hill, a cyclist slows down from 25 mph to 6 mph in 10 seconds. What is her deceleration?
- 9. A motorcycle traveling at 25 m/s accelerates at a rate of 7.0 m/s<sup>2</sup> for 6.0 seconds. What is the final speed of the motorcycle?
- 10. A car starting from rest accelerates at a rate of 8.0 m/s. What is its final speed at the end of 4.0 seconds?
- 11. After traveling for 6.0 seconds, a runner reaches a speed of 10. m/s. What is the runner's acceleration?
- 12. A cyclist accelerates at a rate of  $7.0 \text{ m/s}^2$ . How long will it take the cyclist to reach a speed of  $18 \text{ m/s}^2$ ?
- 13. A skateboarder traveling at 7.0 meters per second rolls to a stop at the top of a ramp in 3.0 seconds. What is the skateboarder's acceleration?

## Page 4 of 4

### **Challenge Problem:**

- 14. Make up three acceleration problems of your own. Give the problems to a friend to solve and check their work.
  - a. Make up a problem that involves solving for acceleration.
  - b. Make up a problem that involves solving for final speed  $(v_f)$ .
  - c. Make up a problem that involves solving for time.