Chapter 17 Answers

Skill and Practice Sheet Answer Key

17A The Inverse Square Law

1.	0.25	W/m ²
Ι.	0.25	W/m ²

- 2. one-ninth
- 3. 24,204 km (four times the original distance)
- 4. 55.6 N
- 5. It is 9 times more intense 2 meters away.
- 6. It is 16 times more intense at 1 meter than at 4 meters away.

17B Magnetic Fields and Forces

- 1. 4×10^{-6} tesla, 0.04 gauss
- 2. 0.04 meter or 4 centimeters
- 3. The answer is shown in the graphic at right.
- 4. The force from each wire is toward the other wire. The wires are attracting each other.

5. The force would change by a factor of $\frac{1}{2}$. Since the current in the wires remains the same, the magnetic field at the wires will be reduced by half as the distance increases from *r* to 2r according to the formula:

$$\vec{B} = 2 \times 10^{-7} \frac{I}{r}$$

6. 0.083 tesla

7. The coil has 799 turns.

17C Calculating Gravitational Field Strength

- 1. 8.9 N/kg
- 2. 24.9 N/kg
- 3. 10.4 N/kg
- 4. 10.9 N/kg
- 5. 8.5×10^{25} kg
- 6. 6.0×10^{24} kg
- 7. 271 N/kg

17D Calculating Electric Fields and Forces

1. 2.0 N

2. 0.008 N

3. 1.2 N

4. 63 N/C

- 5. 5.0 N/C
- 6. 25 N/C
- 7. The answer is:

1 joule = 1 newton-meter

We can rewrite this equation as newton = $\frac{\text{joule}}{\text{meter}}$ 1 volt = $\frac{1 \text{ joule}}{\text{coulomb}}$ We can rewrite this equation as coulomb = $\frac{\text{joule}}{\text{volt}}$ Therefore, $\frac{\text{newton}}{\text{coulomb}}$ can be rewritten as $\frac{\frac{\text{joule}}{\text{meter}}}{\frac{\text{joule}}{\text{volt}}}$ Since dividing by a fraction is the same as multiplying by its reciprocal, we can write:

 $\frac{\text{joule}}{\text{meter}} \times \frac{\text{volt}}{\text{joule}} = \frac{\text{volt}}{\text{meter}}$