Skill and Practice Sheet Answers

6A Adding Displacement Vectors

Practice set 1:

1. The total displacement is 5 meters east and 5 meters north.
2. The total displacement is 2 meters east and 2 meters south.
3. The total displacement is zero. Total distance traveled is 40 meters.

Practice set 2:

1. $\vec{x}_{R}=(1,-5) \mathrm{m}$
2. $\vec{x}_{R}=(3,3) \mathrm{m}$; diagram at right:
3. $\vec{x}_{R}=(5,5) \mathrm{m}$
4. $\quad \vec{x}_{R}=(6,2) \mathrm{m}$
5. $\vec{x}_{R}=(2,0) \mathrm{m}$

6B Projectile Motion

1. Answers are:
a. horizontal and vertical distance
b. horizontal speed
c. $d_{\mathrm{x}}=v_{\mathrm{x}} t ; d_{y}=4.9 t^{2}$
d. $\quad 6.4 \mathrm{~m} / \mathrm{s}$
2. Answers are:
a. horizontal speed, time
b. vertical distance, horizontal distance
c. $d_{y}=4.9 t^{2} ; d_{x}=v_{x} t$
d. height $=44.1$ meters, horizontal distance $=30$ meters
3. Answers are:
a. vertical distance
b. time
c. $d_{y}=4.9 t^{2}$
d. 1.4 seconds
4. Answers are:
a. horizontal and vertical distance
b. horizontal speed
c. $d_{\mathrm{x}}=v_{\mathrm{x}} t ; d_{y}=4.9 t^{2}$
d. $\quad 59 \mathrm{~m} / \mathrm{s}$
5. Answers are:
a. horizontal speed, time
b. vertical distance
c. $d_{\mathrm{y}}=4.9 t^{2}$
d. 2.8 meters
6. Answers are:
a. horizontal speed, vertical distance
b. time
c. $d_{\mathrm{y}}=4.9 t^{2}$
d. 0.45 seconds
7. Answers are:
a. height of bridge, time
b. height of person
c. bridge height - vertical distance marshmallow travels = person's height; $d_{y}=4.9 t^{2}$
d. marshmallow travels 3.38 meters; person's height $=1.62$ meters

6C Circular Motion

1. Answers are:
a. $1,188^{\circ} /$ second
b. 200 rpm
2. Answers are:
a. 0.38 meter
b. $\quad 1.52 \mathrm{~m} / \mathrm{s}$
c. $\quad 0.75 \mathrm{~m} / \mathrm{s}$
3. Slower. A cd rotates at about 500 rpm when the head reads the inner edge and 200 rpm when the head reads the outer edge.
4. Answers are:
a. 0.96 meter
b. $\quad 2.15$ meter
c. 1,042 revs
d. 465 revs

6D Universal Gravitation

1. $F=9.34 \times 10^{-6} \mathrm{~N}$. This is basically the force between you and your car when you are at the door.
2. $\quad 5.27 \times 10^{-10} \mathrm{~N}$
3. 4.42 N
4. 7.36×10^{22} kilograms
5. Answers are:
a. $\quad 9.8 \mathrm{~N} / \mathrm{kg}=9.8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}-\mathrm{kg}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
b. Acceleration due to the force of gravity of Earth.
c. Earth's mass and radius.
6. $1.99 \times 10^{20} \mathrm{~N}$
7. $4,848 \mathrm{~N}$
8. $3.52 \times 10^{22} \mathrm{~N}$
