5C Pythagorean Theorem

Read:

The Pythagorean theorem states that the sum of the squares of the lengths of the legs of a right triangle is equal to the square of the hypotenuse. The following expression represents the Pythagorean theorem:
$a^{2}+b^{2}=c^{2}$ where c is the hypotenuse of a right triangle and a and b are the measures of the legs.

Geometrically, this theorem is that the area of $A B G F$ in the figure at right is equal to the sum of the areas of $A C D E$ and $B C K H$.

Examples:

Use the Pythagorean theorem expression $\left(a^{2}+b^{2}=c^{2}\right)$ to solve the following

| Example 1: What is the length of c if |
| :--- | :---: |
| $a=6$ and $b=8$? | | $6^{2}+8^{2}=c^{2}$ |
| :---: |
| $36+64=c^{2}$ |
| $100=c^{2}$ |
| $\sqrt{100}=\sqrt{c^{2}}$ |
| $10=c$ |

problems.

Page 2 of 2

Practice:

All of the following values apply to right triangles. Find the measure of the missing side of the triangle using the Pythagorean theorem. If the measure has a square root (like $\sqrt{3}$) leave it in the answer.

1.	$\mathrm{a}=5$	$\mathrm{~b}=12$	$\mathrm{c}=$
2.	$\mathrm{a}=$	$\mathrm{b}=15$	$\mathrm{c}=17$
3.	$\mathrm{a}=7$	$\mathrm{~b}=$	$\mathrm{c}=25$
4.	$\mathrm{a}=8 \sqrt{3}$	$\mathrm{~b}=4$	$\mathrm{c}=4 \sqrt{2}$
5.	$\mathrm{a}=15$	$\mathrm{c}=20$	
6.			

