Name:

6A Adding Displacement Vectors

Read:
A displacement vector is a quantity that contains two separate pieces of information: (1) magnitude or size, and (2) direction. When you add displacement vectors, you end up at a certain position. This new position is the total displacement from the original position. A vector that connects the starting position with the final position is called the resultant vector (x).

Example:

Andreas walked 5 meters east away from a tree. Then, he walked 3 meters north. Finally, he walked 1 meter west. Each of these three pathways is a displacement vector. Use these displacement vectors to find Andreas's total displacement from the tree.

Displacement vector	Direction	Magnitude (meters)	Total magnitude (total meters walked)
1	east	5	5
2	north	3	$5+3=8$
3	west	1	$8+1=9$

Andreas's motion can be represented on a graph. To determine his total displacement from the tree, do the following:

1. Add the east and west displacement vectors. These are in the x-axis direction on a graph.
$\mathcal{A n d r e a s} '$ walk $=5 \mathrm{~m}$ east $+(-1) \mathrm{m}$ west $=4 \mathrm{~m}$ east
2. Add the north and south displacement vectors. These are in the y-axis direction on a graph.

Andreas's walk $=3$ m north
The total displacement is 4 meters east and 3 meters north.
Andreas walked a total of 9 meters. The resultant vector (x) goes from the starting position to the final position of total displacement.

1. What is the total displacement of a bee that flies 2 meters east, 5 meters north, and 3 meters east?
2. What is the total displacement of an ant that walks 2 meters west, 3 meters south, 4 meters east, and 1 meter north?
3. A ball is kicked 10 meters north, 5 meters west, 15 meters south, 5 meters east, and 5 meters north. Find the total displacement and the total distance it traveled.

Adding displacement vectors using $x-y$ coordinates

A resultant vector can be written using $x-y$ coordinates on a graph. The original position is the origin of a graph where the axes represent east-west and northsouth positions. For example, $(2,3) \mathrm{m}$ is a resultant vector with the following components: 2 meters east and 3 meters north. A resultant vector, ($-3,-1$)m, has components 3 meters west and 1 meter south. Use this information to solve the following problems. Write your answers using $x-y$ coordinates.

Example:

Add the following four vectors to find the resultant vector, X_{R} :

$x_{1}=(5,0) \mathrm{m}, x_{2}=(0,-5) \mathrm{m}, x_{3}=(3,0) \mathrm{m}, x_{4}=(-7,0) \mathrm{m}$

Add the east-west components: 5 meast $+0 m+3 m e a s t+(-7) m$ west $=1 \mathrm{me}$ ast $\mathcal{A d}$ the north-south components: $0 m+(-5) m$ south $+0 m+0 m=(-5) m$ south $\chi \mathcal{R}=(1,-5) m$.

1. Add the following three vectors to find the resultant vector, x_{R} :
$x_{1}=(-2,0) \mathrm{m}, x_{2}=(0,-5) \mathrm{m},, x_{3}=(3,0) \mathrm{m}$
2. Add the following vectors to find the resultant vector. Plot the resultant vector $\left(\mathrm{x}_{R}\right)$ on the grid to the right:
$x_{1}=(4,0) \mathrm{m}, x_{2}=(-1,2) \mathrm{m}, x_{3}=(0,1) \mathrm{m}$
3. Add the following three vectors to find the resultant vector, X_{R} :
$x_{1}=(5,3) m, x_{2}=(-5,0) m, x_{3}=(5,2) m$

4. Add the following three vectors to find the resultant vector, X_{R} :
$x_{1}=(6,-2) m, x_{2}=(-3,1) m, x_{3}=(3,3) m$
5. Add the following three vectors to find the resultant vector, X_{R} :
$x_{1}=(4,4) m, x_{2}=(-2,-6) m, x_{3}=(0,2) m$
